Year 10: Physical World- Objects in Motion

	Check	Date
ASSUMED KNOWLEDGE STAGE 4 OUTCOMES		
SC4-10PW		
describes the action of unbalanced forces in everyday situations		
SC4-11PW		
contributed to finding solutions to problems involving energy transfers and transformations		
PW2 The motion of objects can be described and predicted using the law	ys of	l
physics. (ACSSU229)		
CHARACTERISTICS OF MOTION		
5PW2b. explain qualitatively the relationship between distance, speed and time		
Define the terms distance, speed and time		
Define the terms qualitative and quantitative		
Numeracy: Solve a range of problems requiring speed=distance/time		
CODE: 10PW1 First-hand Investigation: speed=distance/time		
Determine the average speed of a range of activities. e.g. walking, running over different distances. 20m, 50m, 100m		
Define the terms instantaneous and average in relation to speed		
Explain the difference between instantaneous and average speed		
CODE: 10PW2 First-hand Investigation: YouTube video: Usain Bolt 100m and 200m		
races. Students to determine his average speed. Measure out his distance covered in 1		
second. Discuss.		
CODE: 10PW3 First-hand Investigation: Use a ticker timer to qualitatively and quantitatively describe speed (Oxford pg203)		
CODE: 10PW5 First-hand Investigation: Student design task- Balloon car race (Oxford pg207)		
LITERACY SET 1: COSMOS ARTICLE		
Assessment: Oxford online test- Characteristics of motion		
Students to achieve 100% in Support and Consolidate OR Consolidate and Extend		

FORCE, MASS AND ACCELERATION			
5PW2a. describe qualitatively the relationship between force, mass and			
acceleration			
5PW2c. relate acceleration qualitatively to a change in speed and/or direction as			
u result of a net force 5PW2d, analyse qualitatively everyday situations involving motion in terms of			
Newton's laws			
Define the terms force, mass, acceleration and inertia			
Identify Newton's three laws of motion			
Newton's First Law			
Describe the law of inertia			
CODE: 10PW6 First-hand Investigation: Investigating inertia I (Oxford pg211)			
Describe real life scenarios that demonstrate the law of inertia			
CODE: 10PW7 First-hand Investigation: Investigating inertia II (Oxford pg212)			
Analyse friction in terms of Newton's first law			
CODE: 10PW8 First hand Investigation: Resultant forces (Oxford pg213)			
Newton's Second Law			
Recall Newton's second law of motion			
Describe real life scenarios that demonstrate Newton's second law (F=ma)			
CODE: 10PW9 First-hand investigation: To investigate Newton's second law- F=ma			
Solve a range of problems requiring F=ma			
CODE: 10PW10 First-hand Investigation: Accelerating masses. Attach fixed mass to weight run over a pulley. Change mass on trolley and use ticker timer to determine acceleration (Oxford pg217)			
Analyse everyday situations in terms of Newton's second law			
Newton's Third Law			
Recall Newton's third Law of motion			
Describe real life scenarios that demonstrate Newton's third law			
CODE: 10PW11 First-hand Investigation: Newton's laws. Balloon experiment using a string and straw.			
Solve a range of problems requiring Newton's third law			
Distinguish between speed and acceleration e.g. 10m/s v's 10m/s/s			
LITERACY SET 2: MIXED ACTIVITIES			
Assessment: Oxford online test- Characteristics of motion Students to achieve 100% in Support and Consolidate OR Consolidate and Extend			

PW4 Energy conservation in a system can be explained by describing energy transfers and transformations (ACSSU190) COLLISIONS AND ENERGY TRANSFER				
Define the term energy, transfer and conservation				
Recall the Law of Conservation of Energy				
Outline that energy can be transferred between objects				
CODE: 10PW12 First-hand Investigation: Balls in motion (Oxford pg222)				
Define kinetic energy and relate it to mass (KE = $\frac{1}{2}$ x m x v ²)				
Define gravitational potential energy and relate it to mass and height (GPE = m x g x h)				
CODE: 10PW13 First-hand Investigation: One Newtown and One Joule (Oxford pg224)				
CODE: 10PW14 First-hand Investigation: Conservation in Action (Oxford pg225)				
5PW4b. describe how, in energy transfers and transformations, a variety of processes can occur so that usable energy is reduced and the system is not 100% efficient				
Define the term efficiency				
Describe how seatbelts, crumple zones and airbags reduce the effect of a collision in terms of 'work' and Newton's laws				
CODE: 10PW15 First-hand investigation: Crash testing (Oxford pg 227)				
Describe specific energy transformations and transfers using sporting examples				
NUMERACY AND SKILLS SET				
Assessment: Oxford online test- Collisions and energy transfer Students to achieve 100% in Support and Consolidate OR Consolidate and Extend				
Assessment: Motion And Energy Chapter Test				
Comments and Suggested improvements				
Date: Signature:				